Derived Multi-population Genetic Algorithm for Adaptive Fuzzy C-Means Clustering

نویسندگان

چکیده

Fuzzy C-Means (FCM) is a common data analysis method, but the clustering effect of this algorithm easily affected by initial centers. Currently, scholars often use multiple population genetic (MPGA) to optimize centers, MPGA has insufficient global search ability and lacks self-adaptability, prone premature convergence, poor Therefore, paper proposes an adaptive FCM DMGA-FCM based on derivative (DMGA). In algorithm, firstly, operator, which proposed for first time in paper, performs operations initialized populations improve algorithm's searchability deal with lack inter-population ability. Secondly, probability fuzzy control operator used dynamically adjust adaptability turn enhances merit-seeking DMGA avoids convergence. Finally, center optimized enhance algorithm. The simulation experiments MRI brain map application results show that can obtain better medical image segmentation compared other related algorithms.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data

The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...

متن کامل

ADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE

The  tunnel  boring  machine  (TBM)  penetration  rate  estimation  is  one  of  the  crucial  and complex  tasks  encountered  frequently  to  excavate  the  mechanical  tunnels.  Estimating  the machine  penetration  rate  may  reduce  the  risks  related  to  high  capital  costs  typical  for excavation  operation.  Thus  establishing  a  relationship  between  rock  properties  and  TBM pe...

متن کامل

OPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM

This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...

متن کامل

Using fuzzy c-means clustering algorithm for common lecturer timetabling among departments

University course timetabling problem is one of the hard problems and it must be done for each term frequently which is an exhausting and time consuming task. The main technique in the presented approach is focused on developing and making the process of timetabling common lecturers among different departments of a university scalable. The aim of this paper is to improve the satisfaction of com...

متن کامل

A thresholded fuzzy c-means algorithm for semi-fuzzy clustering

In this paper, the problem of achieving 'semi-fuzzy' or 'soft' clustering of multidimensional data is discussed.A technique based on thresholding the results of the fuzzy c-means algorithm is introduced.The proposed approach is analysed and contrasted with the soft clustering method (see S. Z. Selim and M. A. Ismail, Pattern Recognition 17, 559-568) showing the merits of the new method.Separati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neural Processing Letters

سال: 2022

ISSN: ['1573-773X', '1370-4621']

DOI: https://doi.org/10.1007/s11063-022-10876-9