Derived Multi-population Genetic Algorithm for Adaptive Fuzzy C-Means Clustering
نویسندگان
چکیده
Fuzzy C-Means (FCM) is a common data analysis method, but the clustering effect of this algorithm easily affected by initial centers. Currently, scholars often use multiple population genetic (MPGA) to optimize centers, MPGA has insufficient global search ability and lacks self-adaptability, prone premature convergence, poor Therefore, paper proposes an adaptive FCM DMGA-FCM based on derivative (DMGA). In algorithm, firstly, operator, which proposed for first time in paper, performs operations initialized populations improve algorithm's searchability deal with lack inter-population ability. Secondly, probability fuzzy control operator used dynamically adjust adaptability turn enhances merit-seeking DMGA avoids convergence. Finally, center optimized enhance algorithm. The simulation experiments MRI brain map application results show that can obtain better medical image segmentation compared other related algorithms.
منابع مشابه
A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE
The tunnel boring machine (TBM) penetration rate estimation is one of the crucial and complex tasks encountered frequently to excavate the mechanical tunnels. Estimating the machine penetration rate may reduce the risks related to high capital costs typical for excavation operation. Thus establishing a relationship between rock properties and TBM pe...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملUsing fuzzy c-means clustering algorithm for common lecturer timetabling among departments
University course timetabling problem is one of the hard problems and it must be done for each term frequently which is an exhausting and time consuming task. The main technique in the presented approach is focused on developing and making the process of timetabling common lecturers among different departments of a university scalable. The aim of this paper is to improve the satisfaction of com...
متن کاملA thresholded fuzzy c-means algorithm for semi-fuzzy clustering
In this paper, the problem of achieving 'semi-fuzzy' or 'soft' clustering of multidimensional data is discussed.A technique based on thresholding the results of the fuzzy c-means algorithm is introduced.The proposed approach is analysed and contrasted with the soft clustering method (see S. Z. Selim and M. A. Ismail, Pattern Recognition 17, 559-568) showing the merits of the new method.Separati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Processing Letters
سال: 2022
ISSN: ['1573-773X', '1370-4621']
DOI: https://doi.org/10.1007/s11063-022-10876-9